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Oynamic linking Provides a flexible and convenient way for resolving a

nrocedure's symbolic references to external orocedures and data. It is dis-

tinguished by when a symbolic reference is bound to the (virtual) address of

the external object, viz., binding is deferred until the first actual refer-

ence during execution. Yet in soite of the significant benefits and more than

a decade to assimilate the technology, the Multics system remains as essen-

tiallv the singular working examole. Several authors of articles Li] and

onerating systems texts (2,31 im ly that a major reason for this limited use

is the special hardware required. Ue have addressed this limitation and have

develooed a dynamic linker design that requires no more hardware suotnort that

is orovided by modern microcomputers.

N. Rackground

"1,e have used Multics (41 as the standard for the dynamic linking cana-

bilities we would like to nrovide. Multlcs has an integrated hardware and

software design with the hardware features that strongly suport dynamic link-

ing being (1) indirect addressing through memory, (1) a linkage fault during

indirection, (3) segmentation, and (4) demand v3aging.

NUthough commercial microcomouters do not have the range of hardware

support found in Multics, they are increasingly caoable. This has naturally

led to increased expectations for services, and extensive caoabilities such as

full-functioned languages (e.g., PT/I) and multiorogramwed, multiorocessor

onerating svstems (51 are emerging. We believe that dynamic linking is an

attractive addition to this growing set of system ca-abilities.
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9. Objectives

We want our design to nrovide the usual benefits of dynamic linking. N

nrocess should include only those orocedures and data actually referenced dur-

inq execution, vice those included in the oroqram. Similarly. during software

develomient oroqrans may be run with references to orocedures (e.q., error

routines) not yet coded. 'ven when all the referenced objects are available,

they should be allocated (memorv) resources only if the object is actually

used, without the user predicting the actual usage before orogram execution.

The dynamic linker must not seriously deqrade other capabilities of the

system. We have taken care to accommodate (but not require) in-core sharing

of (nure) orocedures and data, mixed languages in a orocess, a flexible tile

system, and a security kernel structure (51 for the ooerating system. Oro-

gramming generality is oreserved in that a (dynamically linked) external

reference can be used whenever an internal reference can be used.

Pinally, we note that oertormance has been a dominant consideration. Tf

all nrograms were interoreted rath,-: than translated we clearly could simulate

the Multics harciare supnoort for dynamic linking; however, for reasons of oer-

formance we have not chosen the internreter a-mroach. Our major performance

objective lias been to reduce to an absolute minimum the processing overhead

required for the second and subseqluent references to an external object. Much
* I

* • ore processing is required for the first reference that must, of course,

create and save (for subsequent references) the information on the binding

from symbolic reference to virtual address. The completion of this first

reference is at the heart of dynamic linking.
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)ynamic lin!ing always occurs during the execution ot a nrocedure in the

address space of a nrocess. It results from the symholic reference to an

(ex'3licitly declared) external nrocedure or data object. nynamic linking

ifiolicitly requires the notion of a segment, i.e., a logical grout) of informa-

tion (external object) that retains distinct attributes (e.g., symbolic name)

for the life of the process. NIthough hardware segmentation is not mandated,

each segment has an identifier (unique in each process) that we will call the

segment number. N segment number and an offset within the segment constitute

a virtual address that can be used to reference a specific location.

In a 3rocedure's tirst reference (in a -rocess) to an external object

the dynamic linker, with support from the operating system, computes the vir-

tual address corresoonding to the symbolic reference. The linker stores this

binding in what we call a link. We then say the link is "snan"ed", and subse-

quent references are nade through this sna-ed link without use of the linker.

S JWe will next examine conceflually the functions and data bases that make un

the linker, and the rationale for them.

N. External Procedures

Consider what haoens when a orocedure segment <Caller> executes the

first reference in a 3rocess corresponding to the source statement:

CALL Target

<Caller>s object code is typically envisionsd as containing:

CNLL (virtual address of the entry into <Target)) (1)

.1

at the time of execution. However, until <Target> is linked this is not
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feasible, since its virtual address is not known. We might alternatively con-

sider translating the source into

C7AL <Linker> ("Target") ()

where <Linker> is a irocedure seq-ent that calls on the underlying onearatin

system to find the virtual address of the entry for the seqnent naed "Tar-

qet".

ktter determining the virtual address of <Target>, the linker could

"snap the link" by overwriting statement (2) in <Caller>'s object code with

statement (1), a call to the <Tariet>. This is essentially what is Ione in

the traditional (static) linking loader F1. lowever, to do this dynamically

tor a running orogran makes <Caller> impure, in violation ot our design cri-

teria. To address this we follow the Multics [41 exanole, introducing the

concept of a linkage segment and a linkage oointer that ooints to the section

(linkage table) in it for <Caller>.

Wvery process has a distinct (never shared) linkage table which contains

an outgoinq link to each external reference by <CallerO. The outqoin link

for the reference to <Target) can be at a fixed ottset (at translation) from

the linkaqe nointer. Thus the ohject code of the nure nrocedure <Caller> can

he o the torn:

I eLL (Linkage nointer + <Tarqet> link offset) (31

The outoing link is designed to invoke <inker> on the first reference with

something similar to statement (1 above. The linker then modifies (i.e.,

snAos) the outgoing link to invoke <Target> on subsequent references.

tt miqht seen that the snaoied link should merely he ot the form o

statement (1) above. owever, a significant nroblem arises. Ntter the

transfer of control to <Target) we, of course, exoect the linkage nointer to

- -~~ - ..-........-.
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noint to the linkage table for <Target>, not <Caller>. Unfortunately, the

(oure) code of <Target) cannot orooerly load the linkage nointer, because the

anorooriate virtual address is unknown at translation time. Therefore, the

linker includes in the linkage table of <Target> an incoming link for the

entry to <Target>. Thus the proner for, for the outgoing link from <Caller>

is:

CNLL (<Target> incoming link) (4)

This snaovred incoming link contains a statement to load the linkage nointer,

followed by the torn of statement (1) to invoke <Target>. This co'nletes the

invocation and dynamic linking of the external rrocedure <Target>.

1. "xternal Y)ata

Nn external data reference has many similarities to the above. Consider

the reference in <Caller> corresoonding to the source statement:

nointer := Ar)ORPSS(lata)

The oure code in <Caller> will be very similar to statement (31 for the same

reasons; in oarticular we exoect the form:

CA.. (Linkage_ointer + <r)ata> link offset) (5)

* The unsnaoaed link in <Caller>'s linkage table will be similar to state-

ment (2) for orocedures. In oarticular the form

C.%LL <Linker> ("Data") (r1

will invoke the linker to obtain the virtual address of ()ata> and snan the

link. The snapoed link is uch sirmler than for nrocedures. we need some-

thing of the form:

RfTMWrM (virtual address of <r)ata>) (7)

%,.



This comnletes the reference to and dynamic linkinq ot the external data seq-

ment.

N. The Stens in Tstablishinq a tink

qaving examined the basic conceots ot a dynamic linker, we will now

investigate the features of a design for its realization. nce again the

steos (Piqure 11 necessary to dynamically link some external orocedure <Tar-

jetl entry_name> (1) to nrocedure <Caller> will be tollowed, but e'mhasis will

be placed on desiqn details vice linking concents.

1. Invoking the Linker

When <Caller>'s source code is translated, any external reference to

<Target> will he translated into code which transfers the execution noint to

an outgoing link in <Caller>'s linkage table (Caller.link). Translated code

will vary trom system to system; however, concentuallv we desire to have a

nure orocedure (<Caller-'s object code) call some imoure orocedure

j (Caller.link). This will allow us at some later point in the linking nrocess

to convert the initialized outgoing link in Caller.link from code which

invokes the linker to code which will result in the invocation of <Targeti

entryname>.

We have mentioned that the outgoing link is initialized to invoke the

linker. )ne method to do this would be for the outgoinq link to oroduc-e a

(1) !ntry_name renresents a label within <Target> which can be referenced by
an external orocedure. An entry noint is an offset within <Target> associated
with some entry name.

i7
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hardware tault which will invoke the linker as a fault handler. (This

renresents the most qeneral ot the methods available and is the method used in

Multics.) Mowever, harring this canability, the linker may he invoked via a

lirect jun, in the outqoing link. In both these methods the linker wotild be

nassed the offset of the svmbolic name <Tareletl entrvname) in <7aller)'s svm,-

bolic name table (Caller.sym). (Pin object's symbolic name table stores the

symbolic names of all external references in a nrocedure. Ndditionally it

will be used to retain entry naves and their associated entry points utilized

within the orocedure.) N third mechanism to invoke the linker is via an

eKolicit call in <Caller>'s source code oassinq to the linker the symbolic

name of the object to be linked as a actual narameter. (This reoresents a

soecial case which will be discussed later.)

9. Snaping the Link

The question naturally arises of how the linker knows where Caller.svm

is located. We have orovided a mechanism to resolve this oroblem by placing

the virtual address ot an object's symbolic name table in a header in the

object's linkage table. (We can always find an object's linkage table since

jwe )roose to store a oointer to it in a linkage address table.) Thus the

linker can access the <Tarletl entryname> by utilizine the virtual address of

the symbolic name table (from the linkale table header) and the offset it was

massed as a formal parameter.

The linker will then 'oass the symbolic name <Tarqet> to a module in the

sunervisor called the address soace manaler (which will be discussed in M re

detail later). Nt this polnt we will consider the address space manager a

routine which, when -assed a symbolic name, enters the object associated with

that symbolic nane in the address snace of the executing orocess and returns



to the linker the segment number assigned to that object.

Mow that we know the seqment number of <Tarqet>, we can generate a com-

olete virtual address for <Tarletl entry name> b, accessing the entry point

into <Tarqet> associated with 'entry name'. lecall that the symnolic name

table of an object contains not only the symbolic names of external refer-

ences, but also entry names (and their associated entry points) into the

object. Thus if we can access Tarqet.sym we can find the entry point associ-

ated with 'entry_name'. When the segment number of <Target> is returned to

the linker, the linker will construct a linkage table for <Target> (if one

does not already exist) to allow <Target> to engage in dynamic linking. Since

the header ot Tariet.link contains the virtual address of Target.sym, we can

tind the entry noint corresnondin) to 'entry_name'.

We now have a virtual address (of the torm <segment numbert

entry_Point>) and could invoke <Tarletl entry_name) at this Point. However,

we would like to retain this virtual address to simolify subsequent invoca-

tions of <Tarlet entry_name>. We can accomplish this goal bv storing the

virtual address of <Targetl entryname> in Tarqet.link. Nn incoming link has

been set aside for this ourpose and we can transfer control to this incoming

link on subsequent calls by replacing the jump to the linker tound in the out-

going link (in Caller.link) with a jump to the incoming link (for <Targetl

entry_name>). Thus subsequent calls will follow the sequence shown in F'iqure

2..

'lecall that the linkage Pointer is used to indicate the start of the

currently executing procedure's linkage table. Thus when we start executing

in <Target>, we want the linkage oointer to noint to Tarqet.link. The inom-

ing link for <Targetl entryname_ > will be used to set the linkage Pointer

(nrior to transferring control to <Target entryname>). This implies that

orq
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when <Caller> calls an outgoing link the linkage nointer (which noints to

Caller.link) must be saved and furthermore must be restored when the orocess

execution noint returns trom <Target> to <Caller>. This may be done automati-

callv b. the hardware .L/RF.TJRM sequence or exolicitly by the object code in

<Caller'.

3. Linking ata

The stens to link data differ slightly from those for linking pro-

cedures. Pundamentally, data is not executed and does not, therefore, have

the canability to initiate dynamic linking. Thus it <Caller> were to refer-

ence some data object, <')atal entry"name, instead of invoking <natal entry-

name> all we really want to know is its virtual address. '% therefore Oronose

that when snaooed, the outgoing link efor <natal entry name> will load some

pointer register with the virtual address of <natal entry name> and then

return to <Caller>. The sequence for subsequent references to <natal entry

name> is shown in Oiqure 3.

We note that the use of entry names within data imolies that the data

must undergo a translation and have a symbolic name table and linkage table.

These two items may be merged into one structure since the data linkage table

consist ot a header which (at this noint) only contains a wointer to the data

symbolic name table.

12
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R. 'Inlinkinq

In a microcommuter environment, there may exist a limited number of seg-

ments available tor use by a p rocess (2). To nrohibit this from limiting the

size of programs, %e may choose to unlink objects trom an address snace in

order to allow the dynamic linking of new objects to the nrocess.

1. Pundamentals of 'nlinkin

Conceptually unlinking is a trivial nrocess but may include oitfalls

which must be taken into account. To unlink, an object is selected for remo-

val, the object's entry in the linkaqe address table is erased, and all outgo-

ing links to the object are reset to their presnapoed format. This imnlies

two major Points. 'irst, any data required to reset an outgoing link must

either be accessible by some means or stored in the outgoing link itself.

Secondly, we must be able to find each snaoned, outgoing link. It is "roosed

that a linked list of out-oing links referring to an object be formed with a

oointer to the start ot this linked list stored in the object's linkage table

header. Thus, in the trivial case, unlinking an object consist of erasing the

object's entry in the linkage address table, resettinq each outgoing link in

the object's linked list, and finally deleting the object and its linkage

table from the Process address space.

I. esolving Nddressing in the Combined Linkage Table

Iecall that we said there were Pitfalls involved in unlinking. These

arise from how an object's linkaqe table is entered in a process address

(7) As an example, the Z9()Ol# microprocessor [71 with one Memory Management
,Init allows a maximum of 04 segments, some of which must be assigned to the
ocerating system.

14
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snace. 'bserve that it we are concerned with unlinking, there are not ade-

quate segments available to assign each linkage table a unique s--Tent ntimber.

It is prooosed that in such an environment, individual linkage tables he com -

bined into a single segment which we will call the conhined linkage table.

'-ven though the conbined linkage table conserves seTgents, it creates

addressing oroblems which must be taken into account. It, when removing a

deleted object's linkage table from the combined linkage table, a comoaction

of the com*ined linkage table is oerformed, some remaining linkage tables may

be relocated.

This relocation requires the following three addressing -roblens be

resolved: (1) a relocated linkage table must have its entry in the linkale

address table undated, (1) outgoing links which transter control to an incom-

ing link in a relocated linkage table must be undated, (3) nodes of an

(unlinker) linked list oointing to outgoing links in a relocated linkage table

must be undated.

N tourth addressing oroblem which -mst be resolved involves the removed

object's linkage table. Tach outgoing link in this linkage table is a node in

a linked list and must be deleted trom that linked list nrior to removing the

linkage table trom the process address soace. (We note that a doubly linked

or circular linked list of outgoing links is helpful in resolving these last

two addressing ,roblems.)

3. Selecting an bject for lemoval

N brief comment is In order concernin7 the selection of an object tor

removal. N 3rocedure cannot be unlinked and removed from the address snace it

it has a current activation record since this would break the integrity of the

return seqience from a series ot one or more orocedure calls. Therefore a

15



echanism must he developed to test for this condition orior to selecting an

object for removal. This imlies, for examale, that the initial program can-

not be unlinked since it is always either executing or in the return sequence.

TV. qYS ', ITI'ODI)T

We should now like to briefly discuss operatin system support for

dynamic linking. It is felt that the capabilities discussed either already

exist or are ifmlementable in nost mlcrocouiters.

N. The Nddress ;!ace Manager

The address soace -anager serves as an interface between the dynamic

linker and the ooerating system. It will call on 'ile system Management and

(in some cases) memory Management to obtain data which allows it to convert

the symbolic name of an object into an addressable entity. 9avlng -done this,

the address space manager will save this data in a table (which we will call

the orocess reference table) to orevent unnecessary invocations of onerating

sVstem routines for subsequent request to make an object addressable bv a oro-
cess. 'y note that the process reference table is a 'ner process' data struc-

ture and each object entered in it has a unique set of attributes (such as

segment nuher, access rights, etc.) with resoect to that process.

Then )assed a symbolic name, the address soace manager must be able to

access the object associated with that syrbolic name in order to make the

object addressable by the orocess. The address space manager will return to

the dynamic linker a unique orocess-identifier associated with that object.

This object identifier has been assumed to be the segment number assigned to

the object, however onceptually all an object identifier must do is to allow



the lird<er (and the user orocess) to address the object in some fashion.

R. Translator Sunport

Recall that the linker, usirj some format or ten olate, must build a

linkage table tor each object when that object is entered in the Orocess

address snace. The existence of this temrolate and additionally, the existence

ot the symbolic name table, moly that the translator used must suio'rt

dynamic linking by not only translating external references and recognizing

entry nanes, but also by constructing a linkage table temilate and symbolic

nare table tor the translated object. Ns will be shown, it is reasonable to

assume that a translator can he designed (or rmditied) with this capability

since, in jeneral, all data necessary to construct these two items is either

easily computable or available in the translator's symbol table.

1. The Symbolic Mame Table

The symbolic name table (Pigure 4) contains an entry tor each unique

external reference and entry name. In addition, the linkage table offset ot

the corresnonding link (i.e., outjoing and incoming links) for each symbolic

name table entry should be stored with that entry. Wet note that this is man-I: datory for entry names; however, tor external references, the addition of the

(outgoing) link offset is only convenient since it removes the requirement for

the linker to store this information.

It is reasonable to ask where the syrbolic name table is located in a

orocess address %,ace. Recall that for the data object <.ata, we have suq-

gested that nata.sym be appended to Nata.link. (This imolementation allows

<rata> to be based at offset zero and to grow dynamically.) we could use this

solution for a -rocedure also; however, since the synolic name table Aoes not

17
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change, a separate cony for each !rocess is not needed. N reasonable solution

therefore would be to annend the svyholic name table to the end of a (nure)

orocedure's obiect code.

9. The %inkage Table Temnlate

The linkage table temnlate (viqure 5) should reflect the exact format of

an initialized linkaqe table with one excention. We have stated that the

header of a linkage table contains the virtual address of that object's sym-

bolic name table yet at translation time the segment number of the symbolic

name table is unknown. Theretore, we must construct this virtual address when

the linkage table of an object is built. If the svmbolic name table is a iart

of the object code, its virtual address can be com.uted (liven we know the

offset of the symbolic name table in the object code) when the object's seq-

ment number is obtained from the address snace manager. If the svmbolic name

table is a nart of the linkaqe table, we can obtain the linkage table segment

number via the linkage address table.

Wotice that the header of Wiqure 5 includes an entry reflecting the size

of the linkage table. This renresents useful information if an unlinker is

imlemented (by oroviding the unlinker with the size of a linkage table to be

re-oved) and may orovide useful data when loading a linkage table in a -3rocess

address soace.

Ry building the symbolic name table first, the construction of the body

of a temolate becomes quite trivial for the translator. We note that there is

a one-to-one manning between entries in the linkage table andf the symbolic

name table. Therefore the temolate can be easily constructed by scanning the

symbolic name table and initializing a link compatible with each narticular

symbolic name table entry. Ns each link is initialized, we can also enter its

19
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link ottset into its resnective syrfolic name table entry.

It is reasonable to ask where in a svsten the linkage table temlate

should he located. It is suqgested that unless iemand nalingl is available, a

senarate tile for the temnlate be created. This will allow the construction

ot a linkage table without requirinq that the temnlate be entered in a nrocess

address snace. In a demand --aglng environment, the linkage table tem'late can

be a nart of the object code and once it has been utilized to construct the

linkaqe table, it will be 'oaged out' of main memory since it will not be

further reterenced.

. Process Initialization

iMuch work by Janson [1,91 has been devoted to nrocess initialization

includinq a comlete descrintion of how the dynamic linker and the operating

system are linked in a nulti-domain environment. )ur design has been quided

by these results. It should be noted that orocess initialization nust include

the nrocess reference table and linkag.! address table. With resoect to a

user's orogran, process initialization in a dynamic linking environnent

difters only in that the linkage table for the user orogram must be entered in

the process address soace and the linkage oointer initialized orior to com-

rnencing orogram execution.

V. LIWI"Y. WtTqVYJT TN*%'r ET 5')R 1

9aving implied that translator sunoort is necessary to realize dynamic

linking, we would like to sumarize an implementation in an environment where

j this condition does not hold; the inolementation details have been elven else-
where (101. It is felt that a lirnker in this environment should meet certain

r
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tundanental requirements. Virst, we would like to use the same dynamic linker

to link both (translator) sup'oorted and unsupported objects thus requiring

onlv one linker and Additionally allowinq a nrocess to utilize both object

types. N!so, we do not wish to have to exolicitlv declare in our source code

an external object to be sunnorted or unsunnorted since, it that object is

retranslated with a type change (e.g., unsupoorted to supported), all Oro-

cedures referring to that object would have to be retranslated also. (This

imnlies that the linker must be able to differentiate between supported and

unsuooorted objects.)

N. The Tntertace Module

Recall that we have offered an exyliclt call to the linker in a

orocedure's source code as a mechanism for linker invocation such as

!'.T. <TNK>(Target)

In this examole, <LP4'<> is a module which is statically linked to a orocess

and serves as an interface between the nrocess and the dynamic linker. Con-

centually, <LtN'<> must carry out those functions which, in a (translator) su.-

norted system involve the translator.

13. Linking 'Instuonorted bjects

we will now investilate the stens necessary to link the unsunoorted

object <Tarlet> to the unsuoaorted orocedure <Caller> (Tiqure 5).

' en <LT%'1'> is called it will enter <Target> in the next tree location

in Caller.sym and will build an initialized outloinq link for <Target> in

Caller.link. (If <Tar'et" already has an entry in Caller.sym, it also has a

snawled link and all that is required is to execute the snaooed link.) <LTPK*>

will then load <Target)'s parameters into the system according to translator
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conventions and execute the outgoing link.

'hen the linker identities <Target> as unsunnorted, it will cause a

block of virtual meorv to be allocated to serve as Tarqet.link and Tarlet.syn

(since <Target> has neither a symbolic name table nor linkaqe table tennlate).

O)nce Tarlet.link and Tarqet.svn have been initialized, the linker will enter

<Target> as the only entry name in Tar get.sym and comnlete the link by snavr-

ping the incoming link in Tarqet.link (provided <Target> is a nrocedure).

. The Tntertace Linkage nointer

We cannot exr-ct that an unsunnorted translator will know that the link-

ale pointer hardware register is not available for general use and therefore

must assu-e that it cannot be used to point to the linkage table of an execut-

ing unsupported procedure. We therefore propose that an interface linkage

pointer be established (in software) by <LIN(> to duplicate the functions of

the hardware linkage pointer.

We should like to observe two important points. virst, the incoming

link to <Target> must set the interface linkage pointer to noint to

Target.link vice the hardware linkage pointer. qecond, if a orocess executes

both supported and unsupported nrocedures, the first orocedure executed must

he sunorted since this ensures that the hardware linkage pointer is saved

before it can be subject to general use w an unsuoported procedure.

1. The nisadvantages of 'Insupnorted 'ynamic Linking

There are four major disadvantages when linking in an ,risunnorted

environment. To belin with, subsequent references to a linked object will be

executed much slower than in a supnorted system since housekeeping functions

associated with linking are carried out by software routines vice object

.4
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(machine) code. qecondly, we have not nronosed a nechanism to oass external

nrocedures to subroutines as actual narameters. N third disadvantaie relates

to nultinle entry moints. Since the identification of enttv names and their

associated ntry noints requires translator sunnort, an unsunoorted object can

only be accessed at one entry noint (viz., its starting location). N fourth

disadvantage is that external data will he limited to a based variable similar

to those found in L/T or PL/M since <LIN'(o can only return to the point of

call a pointer to the external data.

1laving liscussed the desiqr of a dynamic linker to execute on currently

available microprocessors, we would like to examine hardware features which

are advantaleous in a dynamic linking environment. The hardware features 4is-

cussed can he classified into two ,eneral grouns: those which influence the

desiqn of the +Inanic linker and those which atfect the svste nerfornance '

inirovin1 execution sneed.

N. 'lardware Oeatures Ntfectini T Ankin )esiqn

'.re will discuss tour hardware features which affect the desiin of a

dynamic linker. To belin with, the ability to invoke the linker via a

hardare fault ensres that a co-letelv leneral desiqn can Ie imlenented.

without this canability, a link must he sna'vwed when external data is oassed

as an actual narameter to a subroutine (viz., when the call is executed),

imnlvinj that a link may be snaoned nrior to first reference. The second

desirable hardware feature involves the ca'ability to reference external

objects via indirect addressing. It this feature exists, snaoned outqoing

2.5
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links are simnly virtual addresses for indirect addressing instructions.

(Multics utilizes indirect addressinl and a linkage fault on indirection in

the imrolementation of its dynamic linker fel.)

N third influencing feature involves the size of (hardware) virtual

*.mo ry. 'W'e note it an aleluate number of segments exist (assuminq each seT-

ment is of reasonable size), it may not be necessary to imolement an ,inlinker.

(we can always conserve segnent numbers by combining smaller objects into onee

selrent Orior to execution and reterencing each object via an entry noint.)

The final feature has already been mentioned and is the ability to save and

restore the linkage pointer as a nart of the microorocessor's CNV. and ,"J'N

convent ions.

1. Performance Considerations

Nlong the lines of system nerformance we will discuss two hardware

features: the hardware relocatability of code and hardware seqientation.

These are supPorted by -odem -nicrorocessors such as the Zilol 7.111 (71 and

the tntel q0q; successor (i11.

With resnect to hardware relocatability, we note that one must have

relocatable nrocedure seT-P-nts to Implement a dynamic linker since at the

start of program execution, there exist no bindings between atocedures and

orocess virtual addresses. Therefore, the more efficiently nrocedures can be

relocated (viz., hardware relocation), the better system performance will be.

we have maintained that a dynamic linker can be implemented without

hardware seimentation as long as individual objects can 'e referenced as logi-

cal entities (i.e., segnents). This imolies that many functions intrinsic to

a segmented system must be available in a dynamic linking environment. It in

only logical, therefore, to conclude that it is advantageous to have hardware



seqnentation. En narticular, the in-core sharinq ot ohjects (e.g. nure nro-

ceclures) in a ,iultiYoroqra'iminq environnent is extre.melv ditticult to inolenent

, ithout the sunnort ot hardware se-gmentation.

VT I. e7O',ICL'JJSW

We have presented a design that illustrates the feasihility of dynamic

lin'ting in a microcom.nuter environment. Ie have shown that there are only

modest demanIs on the sunnortirng languale translators, oneratinq system, and

hardwiare. In the other hand, the design is not in conflict with the -ore

sonhisticated, state-ot-the-art capabilities that can be exoected for micro-

co'muters of the future. Turthermore, the nertormance cost is quite moderate:

the onerations for the first reference are essentially those of the tradi-

tional linrin loader. Subsequently we require about three additional

instructions ner external call and about two ner external data reterence.

Thus, we conclude that it is nossible and oractical to include the substantial

benefits of dynamic linking in the set of caAabilities for present and future

microcomouters.
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